Schrödinger’in Kedisi

'Ders notları' forumunda SümbüL tarafından 5 Aralık 2009 tarihinde açılan konu


  1. Schrödinger
    Schrödinger’in Kedisi
    EPR

    Schrödinger’in Kedisi
    Kuantum mekaniğinin temel dalga denklemini yazan Erwin Schrödinger(1887 - 1961) de sonraki yorumları kabullenmeyenler arasındadır. Schrödinger, sonuçta kuramdan (gelişmesine katkıda bulunduğuna pişman olduğunu söyleyecek kadar!) soğudu. Bundan sonra o da Albert Einstein gibi kuramın “mantıksızlığını” çarpıcı biçimde ortaya koyacak örnekler aramaya koyuldu. 1935′te ortaya koyduğu “Schrödinger’in Kedisi” adı ile anılan düşünce deneyi bunların en ünlüsüdür. Aynı yıl Einstein, Podolski ve Rosen, EPR Deneyi adıyla bir düşünsel deneyle kuantum kuramının aldığı biçimi eleştirmeye çalıştılar. Ama zaman, Schrödinger’i ve Einstein’i değil, kuantum kuramını haklı çıkardı.

    Şimdi Schrödinger’in düşünce deneyini görelim.

    Sağlıklı bir kediyi hava alabilen bir kutu içine koyalım. Kutuda zehirli bir gaz şişesi bulunsun ve bu gazın şişeden salınmasını sağlayacak mekanizma, bozunma yarı ömrü 1 saat olan bir radyoaktif parçacık ile kontrol edilsin. Bu mikroskobik parçacığın davranışını ancak kuantum mekaniği ile ifade edebiliriz, fakat şimdi makroskobik bir sistem olan kedinin kaderi de artık parçacığın davranışına bağlanmış oluyor.

    Schrödinger’in iddiasına göre 1 saat sonunda kedinin canlı ve ölü olma olasılıkları eşit. Dalga fonksiyonunun anlamı ‘ya bozunma oldu ve kedi öldü ya da olmadı ve kedi hayatta’ gibi uç iki olasılığı anlatmaktan ibaret değil. Schrödinger’in analizi doğru ise kuantum kuramı, (birisi bakıp durumu bu iki seçenekten birine indirgeyene kadar) kedinin iki durumunun yan yana bulunduğunu söylüyor. Yarı ölü-yarı diri. Schrödinger, bu kadar mantığa zıt bir kuramın düzeltilmeye muhtaç olduğu sonucuna varıyor. Buna karşılık birçok fizikçi (Hawking, Gell-Mann ve başkaları) bu problemin yapay olduğu görüşündeler.”
    Schrödinger’in Kedisi Deneyi Nasıl Yorumlanmalı?
    Bu deney, mikrodünyaya bağlanmış bir makrodünyanın mikrodünya terimleriyle yorumlanmasıdır. Bir kere atomik ve moleküler dünyanın olasılık düşüncesi makrodünyaya taşınmış bulunuyor. Çünkü gözlem yapmadığımız sürece kenidinin ölü ya da diri olduğunu bilemeyiz.Buradaki yanıt da “Kedi yüzde elli ölü,yüzde elli diri” yorumundan çok, ölü ve diri olma olasılığı eşit anlamına gelmektedir.
    Stefan Hawking (1942-…) şöyle diyor:
    “Kanımca, modelden bağımsız bir gerçekliğe karşı dile getirilmeyen inanç, bilim felsefecilerinin kuantum mekaniği ve belirsizlik ilkesi konusunda karışlaştıkları güçlüklerin altındaki nedendir. Schrödinger’in kedisi denen ünlü bir düşünce deneyi vardır. Bir kedi kapalı bir kutunun içine yerleştirilir. Ona yönelik bir silah vardır ve belirli bir yönde bir radyoaktif çekirdek bozunursa silah ateş alacaktır, bunun gerçekleşmesinin olasılığı yüzde 50′dir. (Bugün, yalnızca bir düşünce deneyi olarak bile, hiç kimse böyle bir şey önermeye cesaret edemez, fakat Schrödinger’in zamanında hayvanların özgürlüğü kavramı henüz duyulmamıştı).

    Eğer biri kutuyu açarsa kediyi ya ölü ya canlı bulacaktır. Fakat kutu açılmadan önce kedinin kuantum durumu ölü kedi durumuyla kedinin canlı olduğu durumun bir karışımı olacaktır. Bazı bilim felsefecileri, bunun kabul edilmesini çok güç bulurlar. İnsanın yarı hamile olabilmesinden öte kedinin yarı vurulmuş,yarı vurulmamış olması mümkün değildir Onların içinde bulundukları güçlük,dolaylı olarak bir nesnenin belirli bir tek geçmişe sahip olduğu klasik bir gerçeklik kavramını kullanmalarından kaynaklanır. Kuantum mekaniğinin temeli, farklı bir gerçeklik görüşüne sahip olmasıdır. Bu görüşte bir nesne yalnızca bir tek geçmişe değil,mümkün olan tüm geçmişlere sahiptir. Çoğu durumda belirli bir geçmişe sahip olma olasılığı,biraz farklı bir geçmişe sahip olma olasılığını siler,fakat belli durumlarda komşu geçmişlerin olasılıkları birbirini güçlendirir. Nesnenin geçmişi olarak gözlemlediğimiz şey, bu güçlendirilmiş geçmişlerden biridir.

    Schrödinger’in Kedisi durumunda güçlendirilmiş olan iki geçmiş vardır. Birinde kedi vurulmuştur,diğerinde ise canlı kalır. Kuantum kuramında her iki olasılık birlikte varolabilir. Fakat bazı felsefeciler, açıkça belirtmeden kedinin yalnızca bir geçmişi olabileceğini varsaydıkları için kendilerini çıkmazda bulurlar. Her bir parçacığın belirli,tek bir geçmişi olduğu yolundaki varsayıma ilk olarak Feynman karşı çıktı. İkinci Dünya Savaşını izleyen yıllarda Feynman, parçacıkların uzay-zamanda olası her yol boyunca,bir konumdan diğerine ilerlediği önerisini getirdi. Feynman her bir yörünge ile biri dalganın boyutu-genliği biri de fazı- çukurda ve tepede bulunması- olmak üzere iki sayıyı ilişkilendirdi. A’dan B’ye giden bir parçacığın olasılığı, A ve B’den geçen her olası yolla ilgili dalgaların toplanmasıyla bulunuyordu.Gündelik dünyada nesneler,bize başlangıç ve sonuç hedefleri arasında tek bir yol ,tek bir yörünge izliyormuş gibi görünür. Bu durum Feyman’ın birden fazla geçmiş(ya da geçmişlerin toplamı) kavramıyla uyum gösterir mi? Evet. Çünkü her bir yola sayılar verme kuralı,büyük nesneler için yolların katılımları birleştiğinde,biri dışında bütün yolların birbirini etkisizleştirmesini gerektirir. Yani sonsuz yol çeşitinden sadece biri,makroskopik nesnelerin harekete göz önüne alındığı sürece önemlidir ve bu yörünge de Newton’uun klasik hareket yasalarından ortaya çıkandır.
    Zamanın doğası fizik kuramlarımızın gerçeklik kavramını belirledikleri bir başka alan örneğidir. Eskiden zamanın sonsuza kadar aktığının açık olduğu düşünülürdü, fakat görelilik kuramı, zamanı uzay ile birleştirmiş ve her ikisinin Evren’deki madde ve enerji tarafından eğrilebileceğini veya bükülebileceğini söylemiştir. Böylece zamanın doğasını kavrayışımız Evren’den bağımız olmaktan onun tarafından şekillenmiş olmaya doğru değişmiştir. O zaman, zamanın belirli bir noktadan önce kolayca tanımlanamayabileceği anlaşılır oldu; zaman içinde geriye gidilirse aşılamaz bir engele, ötesine kimsenin gidemediği bir tekilliğe gelinebilir. Durum böyleyse,kimin veya neyin büyük patlamaya neden olduğunu veya onu yarattığın sormak anlamlı olmaz. Neden olma ve yaratmadan söz etmek, dolaylı olarak, büyük patlama tekilliğinden önce bir zaman olduğunu varsayar. Yirmi beş yıldır, Einstein’ın genel görelilik kuramının zamanın on beş milyar yıl önce bir tekillikte bir başlangıca sahip olması gerektiği kestiriminde bulunduğunu biliyoruz. Fakat felsefeciler, henüz bu fikre ulaşamamışlardır. Onlar hala kuantum mekaniğini altmış beş yıl önce(Hawking bu kitabını 1993′te yazmıştı) atılan temelleri konusunda endişeleniyorlar. Fiziğin keşif alanının daha ileri gittiğini kavramıyorlar.

    Daha da kötüsü, Jim Hartle ve benim Evren’in herhangi bir başlangıç veya sona sahip olamayabileceğini ileri sürdüğümüz matematiksel sanal zaman kavramıdır. Sanal zaman hakkında konuşmam nedeniyle bir bilim felsefecisi bana şiddetle saldırmıştır. O : “Sanal zaman gibi bir matematiksel hilenin gerçek Evren’le nasıl bir ilgisi olabilir?” demiştir. Kanımca bu felsefeci teknik matematiksel gerçek ve sanal sayılar terimleri ile gerçek ve sanalın günlük dilde kullanılma şeklini birbirine karıştırıyor. Şu sözler benim tezimi açıklar: Kendisini yorumlamakta kullanacağımız bir kuram veya modelden bağımsız olarak neyin gerçek olduğunu nasıl bilebiliriz?

    Evren’i yorumlamaya çalışırken karşılaşılan problemleri göstermek için görelilik ve kuantum mekaniğinden örnekler kullandım. Göreliliği ve kuantum mekaniğini anlamanız veya hatta bu kuramların yanlış olmaları önemli değildir. Göstermiş olmayı umduğum şey,bir kuramın bir model olarak değerlendirildiği bir tür pozitif yaklaşımın, en azından bir kuramsal fizikçi için, Evren’i anlamanın tek yolu olduğudur. Evren’deki her şeyi tanımlayan tutarlı bir model bulacağımız konusunda umutluyum. Bunu yaparsak bu insan soyu için gerçek bir zafer olacaktır.”
     



  2. Cevap: Schrödinger’in Kedisi

    Schrödinger’in Kedisi ya da Kuantum Kuramının Gizemli Yanları

    Anlatan: Roger Penrose

    Kuantum mekaniği güzel ve derli toplu bir konudur; ama yanı zamanda gizemlerle dolu bir konudur . Hiç kuşkusuz kimi açılardan şaşırtıcı ,kimi açılardan da paradoksal olan bu konu gizemli bir konudur. Vurgulamak istediğim,gizemlerin iki farklı türde olduklarıdır. Bunlara ŞAŞ-gizemleri ve SOR-gizemleri isimlerini vermekteyim.

    ŞAŞ-gizemler, ŞAŞırtan gizemlerdir. Bu gizemlerin fiziksel dünyanın kendisinde yatan gizemler olduklarında şüphe yoktur. Kuantum mekaniğinin böyle gizemli bir şekilde davrandığını bize söyleyen esaslı deneyler vardır. Bu tarz etkilerin hepsi de eksiksiz bir biçimde sınanmış olmasa da, kuantum mekaniğinin haklı olduğuna hemen hiç şüphe yoktur. Bu gizemlerin kapsadıkları olaylardan bazıları şunlardır: Dalga-tanecik ikiliği, buna daha önce biraz değinmiştim;boş ölçümler, bundan az sonra söz edeceğim; spin, az önce anlatmıştım ve yerel olmayan etkiler, buna da kısa bir süre sonra değineceğim. Bunlar hakikaten de insanı şaşırtan olaylardır, ama çoğu insan bu olayların gerçek olup olmadıklarını sorma gereği bile duymaz;doğanın bir parçası olduklarına şüphe yoktur.

    Diğer taraftan SOR-gizemleri adını erdiğim başka bazı problemlerle de vardır ki, bunlar paradoksal gizemlerdir. Benim düşünceme göre bunlar, kuramın eksik veya yanlış oluşunu veya buna benzer başka bir aksaklığın işaretidirler. Bu yüzden daha esaslı bir SORgulama gerektirirler. Başlıca SOR-gizemi,yukarıda değindiğim ölçme problemi hakkında olanıdır; yani kuantum düzeyinden çıkıp klasik düzeye adımızı attığımız anda kuralların U’dan R’ye değişmesi problemidir. Şayet kuantum sistemlerinin ne denli geniş ölçekte ve ne kadar karmaşık düzeyde davranışlar sergilediklerine aklımız daha çok erseydi, hiç olmazsa yaklaşıklıkla veya bir yanılsamayla da olsa acaba şu R yönteminin neden ortaya çıktığını kavrayabilir miydik? SOR-gizlemelerinin en ünlüsü Schrödinger’in Kedisi’dir.

    Schrödinger’in Kedisi
    Kuantum kuramının eksik ya da aksaklıkları bulunduğuna işret eden Roger Penrose, kuantum kuramının gizemleri arasında Schrödinger’in Kedisi olduğunu belirtir: “Öncelikle hemen belirtmeyim ki Schrödinger çok insancı bir adamcağızdı ve bu deney düşünce deneyidir. Deneydeki kedi, aynı anda hem ölü hem de diri bir haldedir. Böyle kediler ortalıkta gözükmez. Az sonra bu konuya uzun uzadıya değineceğim.”
    EPR ve Deney

    Benim görüşüme göre ŞAŞ-gizemleriyle ne yapıp ne edip iyi geçinmeyi öğrenmeliyiz. SOR-gizemlerine gelince daha iyi bir kuram elde ettiğinizde bunların da defteri dürülmeli derim. Bunun, SOR-gizemlerine yönelik benim kendi görüşüm olduğunu burada vurgulamak isterim. Diğer pek çok kimse tarafından kuantum kuramının (apaçık?) paradoksları farklı bir ışık altında, hatta demeliyim ki, birçok farklı ışık altında görülmektedir.

    Daha ciddi bir durum arz eden SOR-gizemlerine geçmeden önce,izninizle ŞAŞ-gizemlerinden bir parça söz edeyim. ŞAŞ-gizemlerinin en çarpıcı olanlarından iki tanesine burada değineceğim. Bu problemlerden ilki kuantumun yerel olmayışı ya da kimilerinin benimsediği biçimiyle kuantum dolaşıklığı ‘dır. Bu, çok sıra dışı bir durumdur. Fikir özgür biçimiyle, Einstein ile meslektaşları Podolsky ve Rosen’den (s: 83) gelmiştir ve EPR deneyi olarak bilinir. Anlaması belki de en kolay olan biçimi David Bohm tarafından öne sürülenidir. Elimizde,daha sonra elektron ve pozitron gibi zıt yüklü iki adet spin - 1/2 parçacığına bölünecek olan bir spin- O parçacığı vardır. Aralarında uzak bir mesafe bulunan A ve B noktalarına gidecek olan parçacıkların spinlerini ölçmek istiyoruz. John Bell’e borçlu olduğumuz bir teorem vardır. Bu teorem bize, A ve B noktalarında gerçekleştirilecek olan gözlem sonuçlarının birleşik olasılılıklarına dair kuantum mekaniğinin beklentileri ile “yerel gerçekçi” bir model arasında ihtilaf bulunduğunu söylemektedir. “Yerel gerçekçi” model deyimiyle A’daki elektron kendi başına bir şey, B’deki pozitronun da kendi başına bir şey olduğunu, bu ikisinin birbirlerinden ayrık bulunduğunu ve hiçbir biçimde birbirlerine bağlı olmadıklarını kabul eden modelleri kastetmekteyim. Bu varsayım, bu durumda, A ve B’de gerçekleştirilmesi söz konusu olan gözlemlerin birleşik olasılıkları konusunda kuantum mekaniğiyle çelişen sonuçlara varmaktadır. Bu durum John Bell tarafından açık bir biçimde ortaya konulmuştur. Elde edilen sonuç çok önemlidir. Örneğin Alain Aspect’in Paris’te yaptığı deney gibi sonradan gerçekleştirilen diğer deneyler de kuantum mekaniğini bu tahminlerinde haklı çıkarmıştır. Bu deney,merkezi bir kaynaktan yayınlanan zıt yönlü bir çift fotonun kutuplanma hallerini göz önüne alır. Parçacıklardan birinin spininin ölçümü,diğerinin spin halini anında belirtmektedir. Bu deneyde fotonların kutuplanma yönlerinden hangisinin ölçüleceği, fotonlar kaynaktan çıkıp A ve B saptayıcılarına varıncaya dek kesinleşmemekteydi. Ölçüm sonuçları açıkça gösterdi ki Bell de dahil olmak üzere çoğu kimsenin düşündüğü gibi A ve B ‘de saptanan fotonların kutuplanma hallerine ait birleşik olasılıklar, kuantum mekaniğinin öngörüsünü doğrulamaktaydı. Halbuki bu, iki fotonun ayrık ve bağımsız nesneler oldukları yönündeki olağan varsayımı çürütmekteydi. Aspect deneyi kuantum dolaşıklığı etkilerini yaklaşık 12 metrelik bir uzaklık üzerinden saptamıştı. Bugünlerde ise kuantum kriptografisinde aynı etkilerin kilometre ölçeğindeki m uzaklıklarda gerçekleştiği kimi deneyler bulunduğunu öğrenmekteyim.

    Olayların A ve B gibi iki ayrık noktada oluştuğunu ama bunların yerel olmayan etkiler dolaysıyla gizemli bir biçimde birbirlerine bağlandıklarını vurgulamalıyım. Ne yolla birbirlerine bağlandıkları ya da dolaştıkları konunun en nazik noktasını oluşturmaktadır. Öyle bir biçimde dolaşmaktadırlar ki, bu dolaşıklıktan yararlanarak A’dan B’ye sinyal göndermenin hiçbir yolu yoktur. Kuantum kuramının görelilikle olan tutarlılığı açısından, bu son derece önemli bir noktadır. Aksi takdirde kuantum dolaşıklığını kullanarak ışıktan hızlı haber ulaştırmak olanaklı hale gelecekti. Kuantum dolaşıklığı çok ilginç bir durumdur. Nesnelerin birbirinden ayrı, ama yine de iletişim halinde bulundukları bir ara duruma karşılık gelmektedir. Bu, tamamıyla kuantum mekaniksel bir olaydır ve klasik fizikte bununla benzeşen başka bir olaya rastlamak mümkün değildir.(3)

     



  3. Cevap: Schrödinger’in Kedisi

    “Boş Ölçümler”

    ŞAŞ-gizemlerine ikinci örnek, boş ölçümlerdir. Elitzur-Vaidman bomba sınama problemi bu durumu gayet güzel açıklamaktadır. Terörist bir çetenin üyesi olduğunuzu ve yığınla bombadan oluşan bir ganimete konduğunuzu varsayın. Her bir bombanın burun kısmında aşırı duyarlı bir fünye bulunsun. O denli duyarlı ki burnunun ucunda bulunan küçük aynaya tek bir görülebilir ışık fotonunun çarpıp yansıması dahi, bombanın dehşet bir patlamayla infilak etmesi için yeterli gelsin. lakin yığının içindeki bombalardan önemli bir kısmı ateş almamaktadır. Ateşlenmeyen bu bombaların kendilerine özgü birer defosu vardır. Çünkü aynanın bağlı olduğu hassas piston,üretim aşamasında sıkışmıştır. Bu yüzden defolu bir bombanın aynasına bir foton çarparsa bile piston hareket etmemekte ve bomba patlamamaktadır. İşte işin püf noktası, defolu bombanın ucunda bulunan bu aynanın, artık infilak mekanizmasını harekete geçirici bir parça değil, sıradan bir sabit ayna görevi görmesidir. Bu koşullar altında problem işidir: İçlerinde defoluların da bulunduğu bu bir yığın bomba arasından,sağlamlığını garanti edebileceğiniz bir bomba seçin. Klasik fizikte bu işin içinden çıkmak tek kelimeyle olanaksızdır. Bir bombanın sağlam olup olmadığını anlamak için, fünyesinin kımıldayıp kımıldamadığına bakmaktan başka çare yoktur ki bu durumda da bomba patlar.

    Kuantum mekaniğinin, olmamış bir şeyin olabilirliğini yoklamanız için size olanak tanıması muhteşem bir şeydir. Resmen, felsefecilerin farzı mahal dedikleri şeyi sınamadan geçirmektedir. Kuantum mekaniğinin farzı misallerden gerçek etkilerin doğmasına göz yumması olağanüstü bir durumdur!

    Bu problemin içinden nasıl çıkacağınızı size göstereyim.

    1993 yılında Elitzur ve Vaidman tarafından sunulan çözümün özgün biçimini anlatacağım. Defolu bir bombamız olduğunu varsayalım. Üzerindeki ayna sıkışmış durumdadır sabit bir aynadır bu yüzden bir foton çarpıp yansıdığında aynada kayda değer bir kıpırdama olmamakta ve patlama gerçekleşmemektedir. Şimdi yeni bir düzenek kuruyoruz. Yayınlanan bir foton ilk olarak yarı yarıya gümüşlenmiş bir aynayla karşılaşmaktadır. Bu ayna kendisine gelen ışığın yarısını geçirmekte diğer yarısını ise yansıtmaktadır Bunun aynaya düşen fotonların yarısının aynanın içinden geçip gittiği, kalan yarısının da aynadan yansıdığı anlamına geldiğini düşünebilirsiniz. Gel gelelim fotonlar kuantum seviyesinde tek tek ele alındıklarında, ortaya çıkan durum hiç de öyle değildir. Gerçekte, kaynaktan tek olarak çıkan bir foton, kendisi için birer seçenek oluşturan her iki-iletilen ve yansıtılan güzergahın üst üste binmesinden meydana gelen bir kuantum haline konulmaktadır. Bombanın üzerindeki ayna,iletilen foton ışınının geçiş hattı ile 45 derecelik bir açı yapan konumda bulunmaktadır. Böylece fotonun aynaya gelen yolu ile yansıyan yolu arasındaki açılar 90 derece olmaktadır. Foton ışınının yarı yarıya gümüşlenmiş aynadan yansıyan kısmı, yolu üzerinde yine 45 derecelik konumda bu kez tam gümüşlenmiş bir başka ayna üzerine düşerek bir araya gelmektedir.

    Gelin, bombanın defolu olması durumunda kaynaktan çıkan tek bir fotonun başına neler geldiğini hep birlikte izleyelim. Yarı yarıya gümüşlenmiş ilk aynayla karışlaştığında, fotonun hali iki ayrı hale bölünür. Bunlardan birisi fotonun yarı gümüşlenmiş aynadan geçip defolu bombaya doğru yönelmesine, öbürü de sabit aynaya doğru yönelecek şekilde yansımasına karşılık gelmektedir(Foton güzergahlarının bu şekilde üst üste binmesi çit-yarık deneyindeki duruma benzemektedir. Ayrıca bu, spinleri bir araya eklememiz durumuyla da esas açısından aynı olaydır.) yarı yarıya gümüşlenmiş aynalar arasında kalan iki ayrı güzergahın uzunluklarının tamtamına birbirine eşit olduklarını varsaymaktayız. Saptayıcılara vardığında fotonun hangi halde bulunduğunu belirleyebilmemiz için, fotonun saptayıcılara ulaşmak için kullanabileceği bu iki ayrı rotayı birbirleriyle kıyaslayarak göz önüne almak zorundayız. Çünkü bu rotalar kuantum seviyesinde üst üste binme durumuna gelmektedirler. B saptayıcına ulaşırken iki rotanın bir birini söndürdüğünü, A saptayıcısına ulaşırken ise birbirlerini(s:88) destelediğini görmekteyiz. Bu nedenle yalnızca bir tek sinyal mevcut olabilir ve bu sinyal de A saptayıcısını uyaran sinyaldir. B saptayıcısı ise hiçbir zaman uyarılmamaktadır. Bu bir girişim desenidir. Bu desende,kimi noktalarda, kuantum halinin iki ayrı bileşeninin o noktada birbirlerini söndürmeleri dolaysıyla aydınlanma şiddeti sıfırdır. Demek ki defolu bir bombadan yansıma durumunda daima A saptayıcısı uyarılmakta, B saptayıcısı ise hiçbir zaman uyarılmamaktadır.

    Şimdi gelelim sağlam bir bombanın söz konusu olduğu duruma.

    Bu durumda bombanın ucundaki ayna artık sabit bir ayna özelliğinde olmadığından, sahip olduğu kımıldama yeteneği bombayı bir ölçüm aygıtı durumuna getirmektedir. Bomba, aynadaki foton için şu iki seçenekten birini ölçecektir: ya varmış bir foton halindedir ya da varmamış bir foton halindedir. diyelim ki foton yarı yarıya gümüşlenmiş ilk aynadan geçmiş olsun ve bombanın ucuna monte edilmiş olan ayna da fotonun bu yolu aşıp geldiğini ölçsün.”boom!!! o anda bomba infilak edecektir. Onu kaybettik. Öyleyse yeni bir bomba yerleştirip yeniden deneyelim. Belki bu sefer bomba, fotonun ulaşmadığını ölçer de patlamaz. Böylece fotonun diğer yolu takip ettiği ölçülmüş olur(Bu ölçüm boş bir ölçümdür). Şimdi, foton yarı gümüşlenmiş aynalardan ikincisine vardığında,iletildiği kadar yansıtılabilir de; bu yüzden artık B’nin uyarılması söz konusudur. Bu nedenle sağlam bir bomba ile çalışıldığında, B’de arada sırada bir foton saptanacaktır. Bu da bombanın,foton öbür yoldan gitmiş olarak ölçtüğüne işaret etmektedir. Burada kilit noktası sağlam bir bombanın bir ölçüm aygıtı olarak davranmasıdır; foton bombayla etkileşmese dahi,yani bir boş ölçüm. . Bu ise fotonun (bir önceki paragrafta) B’de saptanmasını önleyen tam sönümleme durumu ile çatışan bir durumdur. Yani bu kez foton bu yoldan geçmediyse mutlaka öbür yoldan geçmiş olmalıdır! Eğer foton B’de saptanırsa,bombanın bir ölçüm aygıtı olarak davrandığını anlarız;yani bu sağlam bir bombadır. Öte yandan,şayet bomba sağlam bir bombaysa,arada sırada da olsa B saptayıcısı kendisine bir foton ulaştığını ölçecek ve de bomba patlamayacaktır(s: 89).

    Bu ancak ve ancak bombanın sağlam bir bomba olması durumunda mümkündür. Böyle bir durumda bombanın sağlam bir bomba olduğundan emin olabilirsiniz, çünkü fotonon diğer yolu izlediğini gerçekten de ölçmüştür.

    Bu durum gerçekten de olağanüstüdür. Zeilinger, 1994 yılında Oxford’u ziyaret etmiş ve bana bomba sınama deneyini gerçekleştirdiğini söylemişti. Aslında o ve arkadaşları deneyi bombalarla değil,aynı ilkeye dayanan başka bir şeyle yapmışlardı. Zeilinger’in büyük olasılıkla terörist olmadığını hemen belirteyim. Sonra da bana, kendisi ve meslektaşları Kwiat, Weinfurter ve Kasevich’in aynı deneyi bir tek bomba bile israf etmeden yapabildikleri bir çözüm getirdiklerini anlattı. Bunun nasıl gerçekleştiğini,uzun uzadıya anlatmayacağım,çünkü çok daha ince ayrıntıları olan bir düzenektir. Gerçekten de yok sayılabilecek kadar az bir malzeme ziyan olmaktadır. Hatta belki hiçbir şey ziyan etmeden de sağlam bomba bulmamız mümkündür.

    Sizi bu düşüncelerle baş başa bırakmak istiyorum. Bu örnekler kuantum mekaniğinin ve ŞAŞ-gizemlerinin olağanüstü doğasının kimi taraflarını gözler önüne sermektedir. Sanırım meselenin bir bölümünü,bazı insanların bütün bu anlatılanlardan sonra hipnotize olmuş bir konuma geçerek şöyle demeleri oluşturmaktadır: “Aman Tanrım, kuantum mekaniğinin bu denli hayret verici olduğunu bilmiyordum.” Bu gayet isabetli bir belirlemelidir. Bütün bu ŞAŞ-gizemlerini gerçek birer olay olarak kabul ettiğine göre,o kadar hayret verici olsun artık. Ne var ki bununla yetinmeyip SOR-gizemlerini de aynı biçimde kabullenmeleri gerektiği kanısına kapılmaları bence hiç de doğru değildir!

    Şimdi de Scnrödinger’in kedisine dönelim. Bir foton kaynağı ve üzerine düşen fotonun kuantum halini,bir yansıtılan bir de iletilen olmak üzere iki değişik halin üst üste binmesine dönüştüren yarı gümüşlenmiş bir ayna bulunmaktadır. İletilen fotonun yolu üzerinde,foton kendisine ulaştığında bunu haber alan ve kediyi öldürmek üzere bir silahı ateşleyen bir foton sapma aygıtı vardır. Kedinin,ölümün en son halkasını oluşturduğu düşünülebilir. Kedi bu noktada ya ölü ya da diri bir halde bulunduğunda, kuantum seviyesinden,ölçüp biçilebilir nesnelerin dünyasına geçmiş oluruz. Ancak burada şöyle bir problem ortaya çıkmaktadır: Şayet kuantum seviyesinde olup bitenlerin,kedilerin ve benzeri diğer şeylerin seviyesinde de geçerli olduklarını kabul edecek olursanız,o halde kedinin gerçekten içinde bulunduğu halin hem ölümün hem de dirimin üst üste binmesi olduğuna da kendinizi inandırmak zorunda kalırsınız. Sorun şudur: Foton o yöne giden ve bu yöne giden hallerin üst üste binmesi durumundadır;saptayıcı açık olma ve kapalı olma hallerinin üst üste binmesi durumundadır ve kedi de ölüm haliyle dirim halinin üst üste binmesi durumundadır. Bu problem uzun zamandır bilinmektedir. Peki insanlar bu konu hakkında ne gibi görüşler ileri sürmektedir? Kuantum mekaniği konusundaki tavırlar,belki kuantum fizikçilerinin sayısından da fazladır. Burada bir çelişki söz konusu değildir. Çünkü kuantum fizikçilerinden bazıları aynı anda birkaç farklı görüşü savunmaktadırlar.

    Mevcut görüş açılarına yönelik genel bir sınıflandırmayı, Bob Wald’in çok güzel bir yemek sohbetinde söylediği şu sözlerle sunmak istiyorum.

    Kuantum mekaniğine gerçekten inanırsanız,ciddiye alamazsınız.